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Relativistic covariance is a fundamental principle:

no communication faster than c

It guarantees the existence of emag & gravitational waves
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Preliminaries

We have hands-on experience of only a tiny corner of
gravity

So we cannot understand gravitational waves in a similar
physical way to emag waves – try explaining emag waves
to someone who knows only electrostatics!

We have to rely on maths

exploit strong parallels with emag

Notation:

xµ ≡ (ct, x , y , z) xµx
µ ≡

3∑

µ=0

xµx
µ ∂µ ≡

∂

∂xµ
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Maths of wave generation

The emag field is quantified by the Maxwell field tensor

Fµν =






0 Ex Ey Ez

0 Bz −By

-ditto 0 Bx

0






Half of Maxwell’s eqns (ǫ0µ0 = c−2):

∂µF
µν = µ0j

ν

{
ν = 0 ∇ · E = ρ/ǫ0
ν 6= 0 ∇× B− c−2Ė = µ0j

In terms of the emag 4-potential
Aµ = (φ/c ,Ax ,Ay ,Az): Fµν = ∂µAν − ∂νAµ so

µ0jν = ∂µFµν = ∂µ∂µAν − ∂ν∂
µAµ

In radiation gauge ∂µAµ = 0 so

µ0jν = ✷Aν where ✷ ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2
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Radiation

✷φ = 0 has a spherical solution

φ(r , t) = const× sin[ω(t − r/c)]

r

so

Aµ = aµ
sin[ω(t − r/c)]

r

⇒ Eµ ∼ ∂Aµ

∂t
= ωaµ

cos[ω(t − r/c)]

r
B ∼ ditto/c

so E flux (Poynting vector) N = E×B
µ0
∼ 1

r2

The disturbance detaches from its source and carries
energy to infinity
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Now GR

The emag → GR correspondence:

Aµ → gµν ‘metric’ : ds2 = gµνdx
µ
dxν

Fαβ → Γµαβ = 1
2
gµν (∂αgβν + ∂βgαν − ∂νgαβ)

The Christoffel symbol Γ is proportional to the gradient of
g

It encodes the gravitational field:

the eqn of motion of the 4-velocity u for a particle of rest
mass m0 & charge q is

duµ

dτ
= − Γµαβu

αuβ +
q

m0

Fµ
αu

α

principle of equivalence: 1 = mgravitaional/minertial

Emag wave ripples in A; gravitational wave ripples in g
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Gauge conditions

To get ✷A = µ0j we needed to adopt the radiation gauge

A gauge condition doesn’t change physics but it can
greatly simplify the maths

In GR, gauge condition ↔ choice of coordinates

Far from the source the ripples will be small
(∼ 10−21!) so we can assume space-time is almost flat.
Then there are coordinate systems in which

gµν = ηµν + hµν

{
|h| ≪ 1

ηµν = diag(−1, 1, 1, 1)
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Harmonic coordinates

We narrow our choice of coordinates to harmonic
coordinates by requiring

gαβΓµαβ = 0

⇒ gαβgµν (∂αgβν + ∂βgαν − ∂νgαβ) = 0

cf. the radiation gauge condition ∂µA
µ = 0

In this gauge each coordinate satisfies the wave equation:
✷xµ = 0

In flat space ✷z = 0 but ✷r 6= 0:

harmonic coordinates are the extension to curved
spacetime of Cartesian coordinates

To first order in h≪ 1 the harmonic gauge condition is

2∂αh
α
ν − ∂νh

α
α = 0
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Einstein equations

From Γ we construct the curvature tensor

R
µ
ανβ ≡ ∂βΓ

µ
να − ∂νΓ

µ
βα

︸ ︷︷ ︸

+ΓµβλΓ
λ
να − ΓµνλΓ

λ
βα

︸ ︷︷ ︸

∼ curl of grav. force Γ ∼ h so O(h2)

Define Ricci tensor Rαβ ≡ R
µ
αµβ

Then Einstein field equations are

Rαβ − 1
2
Rν
ν gαβ = −8πG

c4
Tαβ ←− E-p tensor

Similar to ∂µF
µν = µ0j

ν



Gravitational

Waves

James Binney

Underlying

physics

Maths of wave

generation

GR case

Harmonic
coordinates

Einstein
equations

Wave solutions

Conclusions

Tickling spacetime

To first order in h

Rαβ = 1
2

(

∂α∂βh
λ
λ − ∂µ(∂βh

µ
α + ∂αh

µ
β) +✷hαβ

)

In the harmonic gauge 2∂αh
α
ν − ∂νh

α
α = 0 this simplifies to

Rαβ = 1
2
✷hαβ ⇒ Rλ

λ = 1
2
✷hλλ

The field equations are now

1
2
✷hαβ − 1

4
✷hλληαβ = −8πG

c4
Tαβ

Taking the trace → ✷hλλ = (16πG/c4)Tλ
λ

⇒ ✷hαβ = −16πG

c4

(

Tαβ − 1
2
Tλ
λ ηαβ

)

Closely analogous to ✷Aα = µ0jα
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Solutions describing waves

A plane wave propagating along x will be described by
hαβ(x − ct)

Form of h must also satisfy gauge condition. A sufficiently
general such form is

hαβ =







0 0 0 0
0 0 0 0
0 0 a b

0 0 b −a







where a(x − ct) and b(x − ct) are arbitrary functions

Like emag waves, gravitational waves are transverse and
have 2 polarisation states:

a 6= 0, b = 0 and a = 0, b 6= 0
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The wave’s impact

A ring of particle initially stationary in yz plane

Hit by wave h = diag(0, 0, a,−a)
Each particle’s 4-velocity u satisfies

duµ

dτ
= − Γµαβu

αuβ

Γµαβ = 1
2
ηµν (∂αhβν + ∂βhαν − ∂νhαβ)

For non-vanishing Γ need:
(i) two indices 2 or two 3; (ii) third index 1 or 0

Initially u = (c , 0, 0, 0) and throughout 0th cpt dominates
so dominant contribution to Γµαβu

αuβ has α or β = 0

Eq for u2 dominated by Γ202 = Γ220
Conclude

du2

dτ
≃ −η22 (∂0h22 + ∂2h02 − ∂2h02) cu

2 = −c∂0h22u2
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The wave’s impact

So y cpt of velocity in yz plane satisfies

dvy

dt
= −∂a

∂t
vy

Initially vy = 0 and from above vy = 0 subsequently

It follows that y , z are unchanged by wave

But distance between diametrically opposed points on
circle does change:

Dy = 2

∫
y

0

dy
√
g22 = 2y

√
1 + a

Perpendicular diameter changes differently:
Dz = 2z

√
1− a

So coordinates don’t change but the particles do move!
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a 6= 0, b = 0

l

a = 0, b 6= 0

l

Detect by comparing lengths of perpendicular diameters
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Conclusions

Gravitational waves are an inevitable consequence of
Lorentz covariance

Close parallels with emag throughout

We find their form by expanding the potential g of the
gravitational field around its field-free form

It’s vital to proceed in the optimum gauge - harmonic
coordinates

Perturbation to g satisfies wave eqn with Ep tensor as
source

The waves are transverse: squash-and-stretch

Detect by comparing lengths of perpendicular rods
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