Gravitational Waves

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solutio

Conclusions

Gravitational Waves

James Binney

Rudolf Peierls Centre for Theoretical Physics

6 May 2017

Outline

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solutio

Conclusions

Underlying physics

2 Maths of wave generation

3 GR case

Harmonic coordinates

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Einstein equations
- Wave solutions

Outline

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case Harmonic

Einstein equations Wave solution:

Conclusions

1 Underlying physics

Maths of wave generation

GR case

• Harmonic coordinates

ヘロト ヘ部ト ヘヨト ヘヨト

3

- Einstein equations
- Wave solutions

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Gravitational Waves James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

- Relativistic covariance is a fundamental principle:
 - no communication faster than c
- It guarantees the existence of emag & gravitational waves

Outline

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

Conclusions

Underlying physics

2 Maths of wave generation

GR case

- Harmonic coordinates
- Einstein equations
- Wave solutions

Preliminaries

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

Conclusions

- We have hands-on experience of only a tiny corner of gravity
 - So we cannot understand gravitational waves in a similar physical way to emag waves try explaining emag waves to someone who knows only electrostatics!
- We have to rely on maths
 - exploit strong parallels with emag
- Notation:

$$x^{\mu} \equiv (ct, x, y, z)$$
 $x_{\mu}x^{\mu} \equiv \sum_{\mu=0}^{3} x_{\mu}x^{\mu}$ $\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Maths of wave generation

Gravitational Waves

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

Conclusions

• The emag field is quantified by the Maxwell field tensor

$$F^{\mu\nu} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ 0 & B_z & -B_y \\ -ditto & 0 & B_x \\ & & 0 \end{pmatrix}$$

• Half of Maxwell's eqns ($\epsilon_0 \mu_0 = c^{-2}$):

$$\partial_{\mu}F^{\mu\nu} = \mu_{0}j^{\nu} \quad \begin{cases} \nu = 0 & \nabla \cdot \mathbf{E} = \rho/\epsilon_{0} \\ \nu \neq 0 & \nabla \times \mathbf{B} - c^{-2}\dot{\mathbf{E}} = \mu_{0}\mathbf{j} \end{cases}$$

In terms of the emag 4-potential A_μ = (φ/c, A_x, A_y, A_z): F_{μν} = ∂_μA_ν - ∂_νA_μ so μ₀j_ν = ∂^μF_{μν} = ∂^μ∂_μA_ν - ∂_ν∂^μA_μ
In radiation gauge ∂^μA_μ = 0 so

 $\mu_0 j_{\nu} = \Box A_{\nu} \quad \text{where} \quad \Box \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \frac{1}{2} \frac{\partial^2}{\partial t^2} = \frac{1}{2} \frac{\partial^2}{\partial t^2}$

Radiation

٠

Gravitational Waves

Maths of wave generation

• $\Box \phi = 0$ has a spherical solution $\phi(r,t) = \text{const} \times \frac{\sin[\omega(t-r/c)]}{r}$ SO $A^{\mu} = a^{\mu} \frac{\sin[\omega(t-r/c)]}{r}$ $\Rightarrow \quad E^{\mu} \sim \frac{\partial A^{\mu}}{\partial t} = \omega a^{\mu} \frac{\cos[\omega(t - r/c)]}{r} \quad B \sim \text{ditto}/c$

so E flux (Poynting vector) $\mathbf{N} = \frac{\mathbf{E} \times \mathbf{B}}{\mu_0} \sim \frac{1}{r^2}$

The disturbance detaches from its source and carries energy to infinity

Outline

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solution

Conclusions

Underlying physics

Maths of wave generation

3 GR case

Harmonic coordinates

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

- Einstein equations
- Wave solutions

Now GR

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solutior

Conclusions

 ${\ensuremath{\, \bullet }}$ The emag \rightarrow GR correspondence:

$$\begin{array}{rcl} A_{\mu} & \rightarrow & g_{\mu\nu} & \text{`metric':} & \mathrm{d}s^{2} = g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} \\ F_{\alpha\beta} & \rightarrow & \Gamma^{\mu}_{\alpha\beta} & = \frac{1}{2}g^{\mu\nu}\left(\partial_{\alpha}g_{\beta\nu} + \partial_{\beta}g_{\alpha\nu} - \partial_{\nu}g_{\alpha\beta}\right) \end{array}$$

- The Christoffel symbol Γ is proportional to the gradient of g
- It encodes the gravitational field:
 - the eqn of motion of the 4-velocity u for a particle of rest mass m₀ & charge q is

$$\frac{\mathrm{d}u^{\mu}}{\mathrm{d}\tau} = -\Gamma^{\mu}_{\alpha\beta}u^{\alpha}u^{\beta} + \frac{q}{m_0}F^{\mu}_{\ \alpha}u^{\alpha}$$

・ロット (雪) (日) (日) (日)

principle of equivalence: $1 = m_{\text{gravitaional}}/m_{\text{inertial}}$

• Emag wave ripples in A; gravitational wave ripples in g

Gauge conditions

Gravitational Waves

- James Binney
- Underlying physics
- Maths of wave generation

GR case

- Harmonic coordinates Einstein equations Wave solution
- Conclusions

- To get $\Box \mathbf{A} = \mu_0 \mathbf{j}$ we needed to adopt the radiation gauge
- A gauge condition doesn't change *physics* but it can greatly simplify the *maths*
- $\bullet\,$ In GR, gauge condition \leftrightarrow choice of coordinates
- Far from the source the ripples will be small $(\sim 10^{-21}!)$ so we can assume space-time is almost flat. Then there are coordinate systems in which

$$g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u} ~~ egin{cases} |{f h}| \ll 1 \ \eta_{\mu
u} = {
m diag}(-1,1,1,1) \end{cases}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Harmonic coordinates

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein

equations Wave solution

Conclusions

• We narrow our choice of coordinates to harmonic coordinates by requiring

$$g^{lphaeta}\Gamma^{\mu}_{lphaeta}=0$$

$$\Rightarrow g^{\alpha\beta}g^{\mu\nu}\left(\partial_{\alpha}g_{\beta\nu}+\partial_{\beta}g_{\alpha\nu}-\partial_{\nu}g_{\alpha\beta}\right)=0$$

cf. the radiation gauge condition $\partial_\mu A^\mu=0$

- In this gauge each coordinate satisfies the wave equation: $\Box x^{\mu} = 0$
 - In flat space $\Box z = 0$ but $\Box r \neq 0$:
- harmonic coordinates are the extension to curved spacetime of Cartesian coordinates
- $\bullet\,$ To first order in $h\ll 1$ the harmonic gauge condition is

$$2\partial_{lpha}h^{lpha}_{
u}-\partial_{
u}h^{lpha}_{lpha}=0$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Einstein equations

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solutio

Conclusions

• From Γ we construct the curvature tensor

$$R^{\mu}_{\alpha\nu\beta} \equiv \underbrace{\partial_{\beta}\Gamma^{\mu}_{\nu\alpha} - \partial_{\nu}\Gamma^{\mu}_{\beta\alpha}}_{\sim} + \underbrace{\Gamma^{\mu}_{\beta\lambda}\Gamma^{\lambda}_{\nu\alpha} - \Gamma^{\mu}_{\nu\lambda}\Gamma^{\lambda}_{\beta\alpha}}_{\Gamma \sim h \text{ so } O(h^2)}$$

• Define Ricci tensor $R_{\alpha\beta} \equiv R^{\mu}_{\alpha\mu\beta}$

Then Einstein field equations are

$$R_{lphaeta} - rac{1}{2} R^{
u}_{
u} g_{lphaeta} = -rac{8\pi G}{c^4} T_{lphaeta} \leftarrow$$
 E-p tensor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Similar to $\partial_{\mu}F^{\mu\nu} = \mu_{0}j^{\nu}$

Tickling spacetime

Gravitational Waves

To first order in h

$$R_{lphaeta} = rac{1}{2} \left(\partial_lpha \partial_eta h^\lambda_\lambda - \partial_\mu (\partial_eta h^\mu_lpha + \partial_lpha h^\mu_eta) + \Box h_{lphaeta}
ight)$$

• In the harmonic gauge $2\partial_{\alpha}h^{\alpha}_{\nu} - \partial_{\nu}h^{\alpha}_{\alpha} = 0$ this simplifies to $R_{\alpha\beta} = \frac{1}{2}\Box h_{\alpha\beta} \quad \Rightarrow \quad R^{\lambda}_{\lambda} = \frac{1}{2}\Box h^{\lambda}_{\lambda}$

• The field equations are now

$$\frac{1}{2}\Box h_{\alpha\beta} - \frac{1}{4}\Box h_{\lambda}^{\lambda}\eta_{\alpha\beta} = -\frac{8\pi G}{c^4}T_{\alpha\beta}$$

• Taking the trace $ightarrow \Box h_\lambda^\lambda = (16\pi G/c^4) T_\lambda^\lambda$

$$\Rightarrow \Box h_{\alpha\beta} = -\frac{16\pi G}{c^4} \left(T_{\alpha\beta} - \frac{1}{2} T_{\lambda}^{\lambda} \eta_{\alpha\beta} \right)$$

Closely analogous to $\Box A_{lpha} = \mu_0 j_{lpha}$

equations Wave solution

Finstein

Solutions describing waves

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solutions

Conclusions

- A plane wave propagating along x will be described by $h_{\alpha\beta}(x-ct)$
- Form of **h** must also satisfy gauge condition. A sufficiently general such form is

where a(x - ct) and b(x - ct) are arbitrary functions

• Like emag waves, gravitational waves are transverse and have 2 polarisation states:

$$a \neq 0, b = 0$$
 and $a = 0, b \neq 0$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

The wave's impact

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solutions

Conclusions

• A ring of particle initially stationary in yz plane

• Hit by wave
$$\mathbf{h} = \text{diag}(0, 0, a, -a)$$

• Each particle's 4-velocity u satisfies

$$\frac{\mathrm{d}u^{\mu}}{\mathrm{d}\tau} = -\Gamma^{\mu}_{\alpha\beta}u^{\alpha}u^{\beta} \Gamma^{\mu}_{\alpha\beta} = \frac{1}{2}\eta^{\mu\nu}\left(\partial_{\alpha}h_{\beta\nu} + \partial_{\beta}h_{\alpha\nu} - \partial_{\nu}h_{\alpha\beta}\right)$$

• For non-vanishing Γ need:

• (i) two indices 2 or two 3; (ii) third index 1 or 0

- Initially u = (c, 0, 0, 0) and throughout 0th cpt dominates so dominant contribution to Γ^μ_{αβ}u^αu^β has α or β = 0
- Eq for u^2 dominated by $\Gamma^2_{02} = \Gamma^2_{20}$
- Conclude

 $\frac{\mathrm{d}u^2}{\mathrm{d}\tau} \simeq -\eta^{22} \left(\partial_0 h_{22} + \partial_2 h_{02} - \partial_2 h_{02}\right) cu^2 = -c \partial_0 h_{22} u^2$

The wave's impact

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case

Harmonic coordinates Einstein equations Wave solutions

Conclusions

• So y cpt of velocity in yz plane satisfies

$$\frac{\mathrm{d}v_y}{\mathrm{d}t} = -\frac{\partial a}{\partial t}v_y$$

- Initially $v_y = 0$ and from above $v_y = 0$ subsequently
- It follows that y, z are unchanged by wave
- But distance between diametrically opposed points on circle *does* change:

$$D_y = 2\int_0^y \mathrm{d}y \sqrt{g_{22}} = 2y\sqrt{1+a}$$

- Perpendicular diameter changes differently: $D_z = 2z\sqrt{1-a}$
- So coordinates don't change but the particles do move!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Outline

Gravitational Waves

James Binney

Underlying physics

Maths of wave generation

GR case Harmonic coordinates

equations Wave solutions

Conclusions

Underlying physics

Maths of wave generation

GR case

• Harmonic coordinates

ヘロン 人間 とくほど 人間 とう

3

- Einstein equations
- Wave solutions

Conclusions

Gravitational Waves

- James Binney
- Underlying physics
- Maths of wave generation
- GR case
- Harmonic coordinates Einstein equations Wave solution
- Conclusions

- Gravitational waves are an inevitable consequence of Lorentz covariance
- Close parallels with emag throughout
- We find their form by expanding the potential **g** of the gravitational field around its field-free form
- It's vital to proceed in the optimum gauge harmonic coordinates
- Perturbation to g satisfies wave eqn with *Ep* tensor as source

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- The waves are transverse: squash-and-stretch
- Detect by comparing lengths of perpendicular rods